SMART MODEL SISTEM PENDUKUNG KEPUTUSAN (SPK) UNTUK IDENTIFIKASI BAKAT ATLET SEPAK BOLA USIA 12-14 TAHUN

Authors

  • Yulingga Nanda Hanief Fakultas Ilmu Keolahragaan, Universitas Negeri Malang
  • Ardi Sanjaya Fakultas Teknik dan Ilmu Komputer, Universitas Nusantara PGRI Kediri

DOI:

https://doi.org/10.56667/djs.v4i02.1765

Keywords:

Decision Support System, Talent Identification, Fuzzy Logic, Simple Additive Weighting, Football.

Abstract

Identifikasi bakat dalam sepak bola merupakan elemen krusial dalam memastikan regenerasi atlet yang berkualitas. Namun, metode konvensional yang mengandalkan observasi subjektif memiliki keterbatasan dalam akurasi dan efisiensi. Penelitian ini bertujuan mengembangkan model cerdas Sistem Pendukung Keputusan (SPK) berbasis metode Simple Additive Weighting (SAW) dan logika fuzzy untuk mengidentifikasi bakat atlet sepak bola usia 12-14 tahun. Metode penelitian dan pengembangan (R&D) diterapkan dengan pendekatan ADDIE (Analyze, Design, Development, Implementation, Evaluation). Studi ini melibatkan diskusi kelompok terarah (FGD) dengan pelatih sepak bola, pengembangan perangkat lunak, serta uji coba validitas dan efektivitas sistem. Hasil validasi menunjukkan bahwa model yang dikembangkan memiliki tingkat kelayakan sangat baik. Implementasi sistem dengan data dari 30 atlet menunjukkan akurasi prediksi sebesar 83,33%, mengindikasikan efektivitas model dalam mengidentifikasi posisi atlet yang sesuai. Model ini menawarkan pendekatan yang lebih objektif dan sistematis dalam identifikasi bakat atlet muda, serta menjadi pionir dalam penerapan logika fuzzy dalam sepak bola di Indonesia. Studi ini merekomendasikan pengembangan lebih lanjut dengan integrasi teknologi kecerdasan buatan untuk meningkatkan akurasi prediksi.

References

Abbott, A., & Collins, D. (2007). Eliminating the dichotomy between theory and practice in talent identification and development: Considering the role of psychology. Journal of Sports Sciences, 22(5), 395–408. https://doi.org/10.1080/02640410410001675324

Bailey, R., & Collins, D. (2013). The standard model of talent development and its discontents. Kinesiology Review, 2(4), 248–259. https://doi.org/10.1123/krj.2.4.248

Barreiros, A., Côté, J., & Fonseca, A. M. (2014). From early to adult sport success: Analysing athletes’ progression in national squads. European Journal of Sport Science, 14(sup1), S178–S182. https://doi.org/10.1080/17461391.2012.671368

De Rycke, J., & De Bosscher, V. (2019). Mapping the potential societal impacts triggered by elite sport: A conceptual framework. International Journal of Sport Policy and Politics, 11(3), 485–502. https://doi.org/10.1080/19406940.2019.1581649

Dodd, K. D., & Newans, T. J. (2018). Talent identification for soccer: Physiological aspects. Journal of Science and Medicine in Sport, 21(10), 1073–1078. https://doi.org/10.1016/j.jsams.2018.01.009

Duncan, M. J., Eyre, E. L., Clarke, N., Hamid, A., & Jing, Y. (2024). Importance of fundamental movement skills to predict technical skills in youth grassroots soccer: A machine learning approach. International Journal of Sports Science & Coaching, 19(3), 1042-1049. https://doi.org/10.1177/17479541231202015

Huang, H.-C., Lin, C.-T., & Hu, C.-S. (2015). Analysis of selection indicators of badminton players by the Delphi method and analytic hierarchy process. International Journal of Computer Science and Information Technology, 7(1), 19.

Khan, N. J., & Ahamad, G. (2024). Fuzzy optimisation based cricket talent identification. Expert Systems with Applications, 237, 121573. https://doi.org/10.1016/j.eswa.2023.121573

King, M., Brown, M., Cox, J., McLellan, R., Towlson, C., & Barrett, S. (2024). Talent identification in soccer: The influence of technical, physical and maturity-related characteristics on a national selection process. Plos one, 19(3), e0298359. https://doi.org/10.1371/journal.pone.0298359

Kusumadewi, S., Hartati, S., Harjoko, A., & Wardoyo, R. (2006). Fuzzy multi-attribute decision making (fuzzy MADM). Graha Ilmu.

Lopes, R. A. R., Aoki, M. S., Carling, C., Ronque, E. R. V., & Moreira, A. (2022). Do changes in fitness status, testosterone concentration, and anthropometric characteristics across a 16-month training period influence technical performance of youth soccer players during small-sided games?. The Journal of Strength & Conditioning Research, 36(5), 1404-1409.

Meylan, C., Cronin, J., Oliver, J., & Hughes, M. (2010). Talent identification in soccer: The role of maturity status on physical, physiological and technical characteristics. International Journal of Sports Science & Coaching, 5(4), 571–592. https://doi.org/10.1260/1747-9541.5.4.571

Noori, M. H., & Sadeghi, H. (2013). Designing basketball talent identification software based on fuzzy logic. Studies in Sports Medicine, 5(13), 27–38. https://dor.isc.ac/dor/20.1001.1.23221658.1392.5.13.2.4

Noori, M., & Sadeghi, H. (2018). Designing a smart model in volleyball talent identification via fuzzy logic based on main and weighted criteria resulted from the analytic hierarchy process. Journal of Advanced Sport Technology, 2(1), 16–24.

Nurjaya, D. R., Abdullah, A. G., Ma’mun, A., & Rusdiana, A. (2020). Rowing talent identification based on main and weighted criteria from the analytic hierarchy process (AHP). Journal of Engineering Science and Technology, 15(6), 3723–3740.

Nurjaya, D. R., Ma’mun, A., Rusdiana, A., Abdullah, A. G., & Mutohir, T. C. (2023). A fuzzy logic model for talent identification and selection of Indonesian junior rowing athletes. Annals of Applied Sport Science, 11(1), 0. http://dx.doi.org/10.52547/aassjournal.1164

Nurrahmi, H., & Misbahuddin, B. (2019). Perbandingan metode SAW (Simple Additive Weighting) dan AHP (Analytic Hierarchy Process) pada sistem pendukung keputusan pemilihan karyawan terbaik. Sainstech: Jurnal Penelitian dan Pengkajian Sains dan Teknologi, 29(1).

O’Connor, D., Larkin, P., & Williams, A. M. (2016). Talent identification and selection in elite youth football: An Australian context. European Journal of Sport Science, 16(7), 837–844. https://doi.org/10.1080/17461391.2016.1151945

Pimenta, E. M., Coelho, D. B., Veneroso, C. E., Coelho, E. J. B., Cruz, I. R., Morandi, R. F., ... & Fernández, J. A. D. P. (2013). Effect of ACTN3 gene on strength and endurance in soccer players. The Journal of Strength & Conditioning Research, 27(12), 3286-3292. https://doi.org/10.1519/JSC.0b013e3182915e66

Sheppard, J. M., Gabbett, T. J., & Stanganelli, L.-C. R. (2009). An analysis of playing positions in elite men’s volleyball: Considerations for competition demands and physiologic characteristics. Journal of Strength and Conditioning Research, 23(6), 1858–1866. https://doi.org/10.1519/JSC.0b013e3181b45c6a

Sukendro, S., & Ihsan, M. (2018). Identifikasi bakat cabang olahraga dengan metode sport search pada ekstrakurikuler sepak bola SMP Negeri 16 Kota Jambi. Jurnal Olahraga Prestasi, 14(1), 46–63.

Sutrisna, K. A. A., Arthana, I. K. R., & Wirawan, I. M. A. (2018). Pengembangan Sistem Pendukung Keputusan Pemilihan Atlet Kabupaten Buleleng Dengan metode Simple Additive Eighting (SAW). KARMAPATI, 7(2), 157-167.

Trivusi. (2022). Penjelasan lengkap mengenai logika fuzzy (fuzzy logic). Retrieved from https://www.trivusi.web.id/2022/05/pengertian-fuzzy-logic.html

Vaeyens, R., Güllich, A., Warr, C. R., & Philippaerts, R. (2009). Talent identification and promotion programmes of Olympic athletes. Journal of Sports Sciences, 27(13), 1367–1380. https://doi.org/10.1080/02640410903110974

Vaeyens, R., Lenoir, M., Williams, A. M., & Philippaerts, R. M. (2008). Talent identification and development programmes in sport: Current models and future directions. Sports Medicine, 38, 703–714. https://doi.org/10.2165/00007256-200838090-00001

Votteler, A., & Höner, O. (2014). The relative age effect in the German football TID programme: Biases in motor performance diagnostics and effects on single motor abilities and skills in groups of selected players. European Journal of Sport Science, 14(5), 433–442. https://doi.org/10.1080/17461391.2013.837510

Wardana, A. K., & Kustiawan, A. A. (2024). Optimization of U23 futsal player selection through a simple additive weighting approach. Fizjoterapia Polska, 24(4), 407-411. https://dx.doi.org/10.56984/8zg01a8d6e8

Zderčík, A., Nykodým, J., Talašová, J., Holeček, P., & Bozděch, M. (2019). The application of fuzzy logic in the diagnostics of performance preconditions in tennis. In Proceedings of the 12th International Conference on Kinanthropology "Sport and Quality of Life", Brno, Czech Republic (pp. 42–49). https://doi.org/10.5817/CZ.MUNI.P210-9631-2020-5

Zheng, J., & Chen, S. (2016). Exploring China’s success at the Olympic Games: A competitive advantage approach. European Sport Management Quarterly, 16(2), 148–171. https://doi.org/10.1080/16184742.2016.1140797

Downloads

Published

2024-09-25

How to Cite

Hanief, Y. N., & Sanjaya, A. (2024). SMART MODEL SISTEM PENDUKUNG KEPUTUSAN (SPK) UNTUK IDENTIFIKASI BAKAT ATLET SEPAK BOLA USIA 12-14 TAHUN. Dharmas Journal of Sport, 4(02), 99–110. https://doi.org/10.56667/djs.v4i02.1765